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We discuss a thermodynamic paradox suggested by Fallows and Greenleaf. 
Using quantum statistical mechanics, we analyze the problem in detail, showing 
why no paradox arises. 

KEY WORDS: Second law; blackbody radiation; nonequilibrium statistical 
mechanics. 

1. INTRODUCTION 

Thermodynamics has outlived several proposed paradoxes. Most of them 
are violations of the second law, which states that the entropy of an isolated 
system never decreases. A corollary is that an isolated system initially at 
uniform temperature cannot evolve into a state of nonuniform temperature. 
In the spirit of thermodynamics, it is assumed that both the initial state and 
the final state are nearly at equilibrium. We examine here a paradox 
discussed by Fallows (1~ and later revived by Greenleaf, (2) which presum- 
ably violates the second law. It is of considerable interest, since it concerns 
the interaction of matter with radiation. 

Let us consider the structure shown in Fig. 1. It consists of part of an 
ellipsoid with foci at A and B. Around A, part of a sphere is built, and the 
surfaces within the ellipsoid-sphere structure are removed. The interior 
surface of the structure is assumed to be perfectly reflecting. At some time 
blackbodies, at a common temperature T, are placed at A and B. They will 
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Fig. 1. Structure described in the text. A and B are foci of the ellipsoid; a sphere is built 
around A. 

begin to radiate, and the radiation will be reflected by the walls of the 
cavity. Because of the geometry, most of the radiation leaving B will fall on 
A ; however, most of the radiation from A will be reflected back to A. This 
situation seems to lead to a paradox, since A apparently becomes warmer 
and B cooler. The system would then change from a state of uniform 
temperature to a state of nonuniform temperature. 

We will see below why this argument is fallacious. When we follow the 
time development of the system on a microscopic level we find that A and 
B eventually reach equilibrium with the radiation. The entire system 
(bodies plus radiation) then has a single temperature, which is lower than 
the starting temperature because part  of the energy is stored in the field. 
The relationship between our result and thermodynamics is as follows. 
Thermodynamics does not explain how a time-dependent system ap- 
proaches equilibrium, nor whether equilibrium will even be reached. It  
makes no reference to time. However, it does say that if a system is in 
equilibrium, then the temperature is uniform. In our case this means that if 
there is an equil ibrium solution, then the blackbodies and the radiation 
have a common temperature and each body emits radiation at the same 
rate as it absorbs it. Our solution, at equilibrium, is consistent with 
thermodynamics. In our formulation of the problem we have used a 
specific model of blackbodies which is sufficiently general for the problem 
at hand. 

2. MODEL AND RESULTS 

In this section we will briefly describe our model and the physics of the 
result. 

A blackbody has atomic structure, and we can regard it as a collection 
of identical atoms. For our purposes, we will take each atom to have two 
energy levels: an excited state with energy c a and a ground state with 
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energy q .  If in a particular body the states have populations N a and Nb, 
then the effective temperature is given by 

N a - e x p (  % -  Eb (1) 37-f i 

Radiation induces transitions between the two states. For the case of 
electric dipole radiation (to which we will restrict ourselves) there are two 
possible processes. (1) The radiation does work on the atom by inducing 
the transition b--~ a, with the absorption of a photon. (2) The atom does 
work on the radiation by falling to its ground state (a--)b),  with the 
stimulated emission of a photon. In addition, atoms in the upper state will 
decay spontaneously with a certain lifetime. Let us imagine that at t = 0 the 
blackbodies, with equal temperatures, are placed in the cavity. Some atoms 
will begin to decay spontaneously, and because of the geometry a greater 
intensity of radiation will fall on A than on B. Suppose for the moment that 
stimulated emission did not occur. Because the absorption rate would be 
greater at A than B, the proportion of excited atoms would increase in the 
former and decrease in latter. It follows that A would become hotter than 
B, and no equilibrium would be reached. But in fact the presence of 
stimulated emission guarantees that some of the radiation falling on A will 
cause transitions to the ground state, thus decreasing the proportion of 
excited atoms in A. 

Our calculation relates the number of excited atoms at A and at B to 
the number of photons in the cavity. Let nff be the number of excited 
atoms at A ; nff the number of nonexcited atoms at A, = 1 - nff ; and N the 
number of photons. Quantities nf  and nb B are defined similarly. We finally 
obtain rate equations of the form 

fi~(t) = --toA[N(t ) + 1]n~(t )  + a~nN(t)n{(t ) (2a) 

h~(t)  = - w ~ [ N ( t )  + 1]n~(t) + (~N(t)n#(t)  (2b) 

where t~ A and w~ are certain frequencies. It turns out that as t--~ c~ the 
solution becomes simply the time-dependent solution, viz. 

naA/nff = n~/n~ = N / ( N  + 1) (3) 

This implies that the blackbodies come to the same temperature. Note, 
though, that they approach the common temperature at different rates. 

If we had taken only absorption into account, then the factors in (2a) 
and (2b) proportional to N(t) + 1 would have been absent. No meaningful 
rate equations would have resulted. 

Having given the general idea of our treatment, we now proceed with 
the actual calculations. 
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3. DETAILS OF THE MODEL 

The system described consists of atoms and the radiation field. The 
only role of the mirror system is to define a cavity with a certain collection 
of normal modes. In practice, these are difficult to determine, but there is 
no need to calculate them. Since the coupling between different modes (via 
interaction with the atomic systems) is weak, we can concentrate on a single 
mode. If its frequency is ~,, then the Hamiltonian of the radiation field is 

H F --'- hpa+a (4) 

and the electric field operator is 

e ( x )  = , ( x ) ( a  + a + ) (5) 

where e(x) is a numerical function of x. In the electric dipole approxima- 
tion, the interaction between an atom at x and the radiation field is 

V(x)  --- exopE(x ) (6) 

Let us label the states of the atom-radiation system by la, n), where a 
denotes the state of the atom (a or b, i.e., the excited state or the ground 
state) and n is the photon occupation number. We will restrict ourselves to 
energy-conserving transitions, so that the only relevant matrix elements of 
V are 

(an  I Vlbn + 1) = exabe(x)(n + 1) '/2 (7a) 

(bn[ Vlan - 1) = ex~be(x)n 1/2 (7b) 

Here X~b is the real dipole moment (a[Xoplb). 
From these results it is clear that the interaction can effectively be 

taken as 

V =  g(x)(o  + a + aa +) (8) 

where the raising and lower operators 

o+__ (0 
operate on the atomic states 

The coupling is 

o__(0 0) 

g(x)  = eGbe(x ) 

Generalizing this treatment to the problem of atoms placed at A and 
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B, we obtain 

where 

v =  vA + v ,  

= gA(ofa + a~a +) + gs(a~a + asa +) (11) 

gA = g(XA) (12a) 

g~ = g(x~) (12b) 

The geometry of the system requires that gA > gB" In the actual problem 
there are many atoms at A and many at B. However, for our purposes we 
can consider only a single atom at each position and, when necessary, scale 
the appropriate results. This means that we consider photon-mediated 
interactions between atoms at A and B but neglect interactions among 
atoms within A or B. Equivalently, we can take all the atoms at A (or B) to 
behave in the same way. The essential features of the problem are con- 
tained in this model. 

The simplest choice for the Hamiltonian of body A is 

H A = CaOA+OA + ebOaOA + (13) 

and similarly for B. However, the atoms are bound into a crystal of some 
kind, and their energy levels will be perturbed by phonon processes. We 
can account stochastically for this effect by adding to e a and % random 
functions of time, fa(t) and fb(t)- Statistically independent functions are 
used for the two bodies. Results obtained from the modified Hamiltonian 
must then be averaged over an ensemble of random functions. We will 
choose fa(t) and fb(t) to have zero average value, and certain other 
properties will be explained in the actual calculation. It might seem that 
these functions add an unnecessary complication to the problem, but 
actually they simplify it, since they eliminate correlations between the two 
blackbodies. The net effect is that the interaction of A with the radiation is 
statistically independent of the interaction of B with the radiation. Thus 

H A =lea +fA(t)]o~-OA + I t  b +fb"(t)]gAO ff (14a) 

H s = same, with A <:~B (14b) 

and finally the entire model Hamiltonian is 

H =  HF+ HA + HB + V (15) 

Within the framework of statistical mechanics, we need not solve for 
the eigenstates of H. Instead, we consider a collection of states ]l), [2) . . . .  
and suppose that the system has probabilities p~, P2 . . . . .  respectively, of 
being in these states. (The states (In)} need not be eigenstates of H.) The 
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probabilities must satisfy 

p. >/0 (16a) 

E P. = 1 (16b) 
n 

If O is an operator, then its statistical average value is 

(0>  = ~ p.(n[OIn> (17) 
n 

which can be written as a trace 

(O> = TrpO (18) 

where p is the density operator 

p = ~ p.[n>(n I (19) 
n 

Alternatively, the probability that the system is in some state [,t'> is simply 

e,I, = ~ p.l<'I'ln>12= <'t%['I'> (20) 

Thus the object of interest is p. We can find it by solving its equation of 
motion, which follows from (19): 

b = - ( i / h ) [ H , o ]  (21) 

Of course the initial conditions must be satisfied. 
In our particular problem, we will always work with a specific repre- 

sentation of p in which the matrix elements are <aAaBnlpta'Aa~n' >. Here a~ 
and a] represent states of an atom at A (either a or b); similarly, a B and a~ 
refer to an atom at B. The photon occupation numbers are n and n'. The 
probability that an atom at A is in its excited state, regardless of the state of 
B and the field, is 

P a a  = (TrsTrrP)aa (22a) 

= ~ I<aanlolaan> + (abn[plabn > (22b) 
n 

= 1 - Pbb (22C) 

Clearly P~a and Pbb are the fractions of excited and ground-state atoms at A, 
so that 

P~ - exp( Is163 
Ob--~ ~ (23) 

Similar formulas apply for the atoms at B. The average number of photons 
in the cavity is 

N = ~ n(TrATr s P)nn (24) 
n 
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At t -- 0 the density matrix factorizes; that is, p(O) has the form 

<a~ a8 nip(0)[ a3 a'~n'> 
(25) 

= < ~  Io~ (0) l~ ; ,><~loB (O)l,~'~><nlOF(O)ln'> 
It is also diagonal, with PA (0) and pB(0) giving thermal populations at the 
initial temperature. No photons are present. 

4. T H E  R A T E  E Q U A T I O N S  

First we find the equation of motion for Paa, the fraction of excited 
atoms at A. We use 

{~,~,a = - ( i /h )  TrFTrA[ H, p ] a ,a  (26) 

The only part of H which makes a contribution is VA, and the result is 

�9 gA (27) ba,~ = - l - ~ -  ~ ( n  + 1)l/2pb.+l,a.+ c .c .  

The symbol at the right means "complex conjugate." Note that 

(Pbn+ 1,an)* = Pan,bn+ l (28) 

Similarly, we can calculate 0b.+l .... using 

i)b. + ,,a. = -- ( i /h)  Try[ H, p ] b. + ,,a. (29) 

We relegate the details of the reduction of (29) to Appendix A. When the 
resulting expression is integrated and inserted into (27), we find 

(-~ )2~'dt'exp[ iA(t t') + i,A(,,,') ] & a ( t )  = - 

X [ ~ ( n +  1)p a . . . .  ('t)--~npbn,bn(f)] 
gAga fotdt , h2 {exp[iA(t-- t ' )+ie~A(t ' t ' )])Oba,ab(t)  

+ c . c .  (30) 

where 

1 (31a) = ~ (~o - ~b) - 

~A(12, t , ) = l  f ' 2 d t ' [ f : ( t ' ) - - f ~ ( t ' ) ]  (31b) 
t l  

Details are contailed in Appendix A. 
The term proportional to gA 2 looks desirable, since it makes (30) have 

roughly the form of a rate equation�9 Forgetting for the moment the 
dependence on n, we see that 0a,a is related to Pa,a and Pb,b" This is certainly 
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an expected result. But the term contains an integral, so Pa,a depends on the 
history of Pa,a and Oh,b, not simply on their instantaneous values. This will 
be discussed below. Atoms at B make their presence known via the term 
proportional to gA gB, since Oba,ab contains correlations between the popula- 
tions at A and B. We would expect, however, that if the energy levels are 
perturbed sufficiently randomly, and if the fluctuations at A and B are 
independent, then this term should average to zero. To a good approxima- 
tion, this is actually the case, provided that we make certain reasonable 
assumptions about the fluctuations. The averaging procedure is carried out 
in Appendix A. Our treatment of the fluctuations pays another dividend: it 
erases the system's memory by removing the integrals in (30). The resulting 
rate equation contains no explicit reference to the past. Physically, it is 
believable that a system subject to random forces should behave this way. 
After the smoke clears we are left with 

Oa,a(t) = - - o o , ~ ( n  + 1)p~,,~n(t ) + w,~nPbn,b , ( t )  (32) 
n 1l 

where w 1 is proportional to g]. 
Now we consider the sums in the equation above. Our aim is to show 

that diagonal elements of the density matrix factorize in some approxima- 
tion, e.g., that p~ .. . .  ~ Pa,aPn,n" Then the sums over n will be related to the 
average number of photons in the cavity. It is intuitive that part of the 
density matrix should factorize. Initially p factorizes, and as time goes on 
the interaction V A + V e mixes the atomic and radiation coordinates, caus- 
ing 0 not to factorize. However, if the interaction is sufficiently gentle, then 
we expect parts of p to be almost factorizable. It turns out that 

Pa .. . .  -= Pa,aPn,n -1- O( g 2) (33) 

The symbol O ( g  2) denotes terms proportional to g~, g~, or gAg ~ (and 
higher powers). This property is proved in Appendix B. Generally the 
coupling of atoms to radiation is weak enough so that we can neglect the 
higher order terms. Equation (32) then becomes a simple rate equation: 

ti~,a(t ) = -~01[N(t ) + 1]O~,~(t) + oolN(t)pb,b(t ) (34) 

where N(t )  is the average number of photons, Eq. (24). By symmetry the 
rate equation for an atom at B has the same form, with o01 replaced by 002, 
which is proportional to gB 2. 

In order to solve (34) we have to calculate N(t) .  This is easily done by 
the methods above, and the result is 

i V ( t )  ~- - { J 2 a ( t )  -- ( )Ba( t )  (35a) 

o r  

U(t)  = oL(O) - o L ( O  + PL(o)  - p L ( t )  (3Sb) 
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since there are no photons present at t = 0. Here OAa is the same as the 
previous Oo,, and ObB, b is the corresponding quantity for an atom at B. In 
detail 

p A = TrBTrF p (36a) 

p B = TrATrF P (36b) 

So far our calculation concerns a single atom at A and a single atom at 
B. More realistically, there should be M atoms at each site. To take this 
circumstances into account we need only scale N(t) by M and interpret pA 
as the fraction of excited atoms at A, and similarly for p ~ .  

5. A N A L Y S I S  

To simplify the notation we define 

x(t)  = Ofa(t) (37a) 

y( t )  = o~(t) (37b) 

The initial condition that the temperatures of A and B are equal implies 
that x(0) = y(0) = x 0 (with 0 < x 0 < �89 Thus the basic equations become 

2/o~, = 2x 2 + 2xy - x(nx  0 + 2) - y  + 2x o (38a) 

9/~02 = 2), 2 + 2xy - y ( 4 x  0 + 2) - x + 2x 0 (38b) 

These coupled nonlinear equations describe the evolution of the system. 
If the system reaches equilibrium, then x a n d y  asymptotically become 

constant for large t. It is therefore of interest 
have sensible time-dependent solutions, Xeq 
shows that 

to check that (38a) and (38b) 
and Yeq- A short calculation 

Xeq=yeq=~[4Xo+3+--(16xZ--8Xo+9)  1/2] (39) 

The first equality is certainly expected, since it  ensures that A and B have 
the same temperature. This is a property which the equilibrium solution 
must have. The upper and lower signs correspond to the following ranges of 
Xeq 

+:  -] < Xeq < 1 (40a) 

-z'. 0 < Xeq < 2 X0 (40b) 

and to keep the temperature positive, we must choose the latter. The 
inequality (40b) simply reflects the fact that a portion of the energy is 
stored in the radiation field. A further property of the time-dependent 
solution is that it is stable under small perturbations in x and y.  To see this, 
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let 

x ( t )  - -  Xeq "t- Xl(t ) (41a) 

y ( t )  ---- Xeq + y , ( t )  (41b) 

with x I and Yl small compared to Xeq. Neglecting nonlinear terms in (38a) 
and (38b), we find that both x I and Yl satisfy 

21 + 2c121 + c~x I = 0 (42) 

where c 1 and c 2 are positive frequencies with c I > c 2. As expected, the 
solutions to (42) are damped in time. 

Evidently the time-dependent solution (39) has all the properties which 
are expected of the true equilibrium solution. It is now our aim to show that 
the system actually evolves into this state as t goes to infinity. 

First we note that x 0 is typically small compared to unity. For 
example, if e a - E bm. 1 eV and initially T = 3000 K, then x 0 = 0.018. So to a 
good approximation the nonlinear terms in (38a) and (38b) can he ne- 
glected. When this is done we obtain 

x ( t ) = - ~ x  + _ _ x ~  o~ l - - ~ o t _ ) e  - ~o I - -~a+ e - ' ~ t  (43a) 
0/+ - -O/_  

y ( t )  = same, with ~01 <:,~% (43b) 

where 

a+ = (2x 0 + 1)(601 -b 092)--t-[(2x 0 + 1)2(601 q - ~ 2 )  2 --  (16x 0 + 3)031~02] 1/2 

(44) 

(The quantity within the radical is always positive.) The asymptotic value 
of x and y agrees in the linear approximation with the previously calculated 
X,q. It is instructive to examine the nonequilibrium properties of this 
solution. Since o~ 1 > ~o 2 we have x ( t ) < y ( t ) .  Therefore in the interval 
0 < t < m, A is actually cooler than B. This surprising result could not 
easily be predicted from a casual examination of the problem. It empha- 
sizes the fact that because of stimulated emission, a stronger coupling to the 
radiation field does not necessarily lead to a higher temperature. 

From the expression for a_+ one can show that if x 0 is chosen 
sufficiently small, then 

�89 < ~ <�89 + ~%) <�89 < o~ l (45) 

This implies that y ( t ) <  0 and j~( t )> 0, with the result that y decreases 
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Fig. 2. Behavior of x, y, and N in the linear approximation. Here x, y,  and N stand for the 
fraction of excited atoms at A, the fraction of excited atoms at B, and the number  of photons 
(scaled by the number  of atoms at A and B). The units of ~01 , o~ 2, and time are arbitrary. 

smoothly from x 0 to its limit 2x0/3. On the other hand, x has a minimum 
at a single time t', and A has a maximum at a later time t". So x passes 
through 2x0/3, reaches a minimum, and then as.ymptotically., approaches 
2Xo/3 from below. In the case of N we obtain N > 0 and N < 0, which 
imply that N increases smoothly to its limit. Figure 2 illustrates the 
behavior of x, y, and N. It should be noted that the restriction to small x 0 
[in order for (45) to hold] is in the spirit of the linear approximations which 
we have made. 

When the nonlinear terms in (38a) and (38b) cannot be neglected, the 
analysis is much more difficult. No exact solution is immediately apparent. 
We have numerically integrated the equations, using values of Xo large 
enough to make the nonlinearities important. We find that the solutions 
asymptotically approach the time-dependent predictions. Thus the system 
reaches equilibrium. The qualitative behavior of the solutions closely resem- 
bles that of the linearized solutions. That is, y and N are monotonic without 
wiggles, and x passes through a minimum before it reaches the asymptotic 
region. For sufficiently large t it is easy to fit the solutions to an exponen- 
tial, and in this way a relaxation time can be determined. Sample solutions 
are illustrated in Fig. 3. 
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A P P E N D I X  A 

We want to reduce the expression 

~)bn+ 1,an(t) = ~( i /h) WrF[ H, D ]bn+ 1,an (A1) 

All parts of H except H B contribute to the right-hand side. A straightfor- 
ward calculation shows that 

= i [hA + faA(t)--f2(t)]Pbn+l,an(t) h 

igAh (n + 1)'/2[p . . . . .  (t) - pb.+l,b.+,(t)] (a2)  

ige 
(• "~ 1) | /2[pb . . . .  bn(t) -- Oban+l,abn+l(t) ] h 

igB 
h [(n + 2)'/2Obbn+Z,aan(t)- nl/2Obbn+l .... -11 
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The integrated form of (A2) is simply 

Pbn+l,an(t) = fotdr ' (exp[ i A ( t -  t') + id?A(t,t' ) ]} 

X -~{F/ + 1)1/2[/0 . . . . .  ( t )  --  P b n + l , b n + l ( t ' ) ]  

igB (n + 1)ll2[Oban,abn(t' ) -- Pban+l,~bn+l(t')] h 

igB[(n- l-2) l /2pbbn+2 .... (t ' )--#l l /2pbbn+ l(t')]) 
h 1 ,aan -- 

We have defined e~ A in the text. Inserting (A3) into (27), we obtain 

[Ja ,a ( t )  = fotdtt (exp[ iA(t - t #) + i~A(t,t '  ) 3) 

X -- ~ (n q- l)[Pan,an(t' ) -- Pbn+l,bn+l(t ')] 

g A g B  Pbbn+ 2 . . . .  I t  ) h2 ~n ( [ ( n + 2 ) ( n + l ) ]  112 ",'" 

(A3) 

[( ,  + 1),] '/2 "c'~ - -  P b b n + l , a a n - l t  ) ]  

+ c .c .  (A4) 

The second sum above is identically zero, while the third sum is nothing 
but Pba,ab(t') in disguise. Hence we obtain (30). 

At this point we wish to average (30) over an appropriate ensemble of 
random functions. This can be done approximately after we identify the 
strongest dependence of the right-hand side on q$A and q~s. It is easy to see 
that [H A + H B, P]a ....  = O, so that 

Pan,a. = -- ( i / h ) [  V, p]  . . . . .  (AS)  

Hence Pa .. . .  has no explicit dependence on 0A and q~s, to order gA (or gs). 
The same result holds for Pbn,bn" On the other hand, 

['ba,a~( t) 
(A6) 

= __1 { [ff(t)--fbA(t)]--[f:(t)--fb~(t)])Pba,ab(t) + A(t)  h 
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where A (t) contains terms proportional to gA or gs. So we have 

3--- { Pba,ab (t) exp [ -- iq~ A (t, O) + ice (t, O) 1 } 
3t (A7) 

= A (t) exp[ - i r  ) + iq~B (t ,0)]  

The dominant  dependence of Pba, ab o n  the r is thereby transformed away. 
(This procedure is equivalent to transforming to an interaction picture.) In 
(30) we can make the replacement 

Vba,ab(t') = {exp[iq~A(t',O)- iq,.(t',O)]}~ba,ab(t' ) (AS) 

where now ~ does not depend strongly on the ~?'s. The properly averaged 
form of (30) is then 

[ gA\2rt , - 
bo'a(t) = --~ -h--) J0 dt expLiA( t -  t ')] 

x (e• - iq~ A ( 6  t ' ) ] > X ( t ' )  

gAgB~2 ~0 ,dt, exp[ i h ( t -  , ')] 

X (exp [ iq~ A (t, 0) ] ) (exp [ - iq5 B (t', 0) ])pb~.ab (t') 

+ C.C. iA9) 

where 

Sit) = 2 i n + 1)O ..... (t) - E nObn,bn(t) (A10) 
Pl n 

The second average factorizes because fluctuations at A and B are indepen- 
dent. 

It is known that perturbations caused by phonon interactions are 
adequately described by Gaussian statistics. In this case we have the result 

(exp[ +-i~t2dt F(t) 1) 

=exp(-  l ft'2dt ft'~dt' ~F(t)F(t'))) 
(AJ1)  

provided that (F(t))= 0. If in addition F(t) fluctuates so rapidly that its 
autocorrelation vanishes at different times, we can take 

= 27 - r )  iAJ2)  

This is a satisfactory approximation for our purposes. When the averaging 
procedure is applied to (A9) (with the energy splittings taken as the 
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stochastic functions) the result is 

g A  2 t t 

gAgB footdt , h 2 

• ( e x p [ i A ( t -  t') - yAt - y.t']}p'b~,ab(t') + C.C. (A13) 

Now we assume that the correlations in each atom are damped out quickly 
with respect to the time scale of physical interest. The exponentials then act 
as delta functions, and we get 

1 (  gA 2 Y  ] 
i 'o,a(O = -- j S ( t )  

1 gag8 [exp(iAt t)]~b~,~6(O ) + C.C. (A14) 
7B h 2 - 7A 

Thus the net effect of the averaging is to cause the diagonal terms to be 
evaluated at time t and the off-diagonal terms to be evaluated at t = 0. The 
latter vanish because there are no initial correlations. Equation (A14) 
becomes 

_ 2 ~n (n + 1)O..,an - ~nnpb.,b. (A15)  
ba,a = 7A 

as asserted in the text. 

APPENDIX B 

In order to prove the factorizability property, it is most convenient to 
work in an interaction picture given by 

= u ( t ) p ( t ) u - ' ( 0  (B1) 
where 

t ! 

U(t) exp 

As usual, H I, H A, and H B are in the Schr6dinger picture; the sole time 
dependence is contained in the energy level fluctuations. We can easily 
show that 

b(t) = - ( i / h ) [  V(0,  P(0]  (a3) 

where 

V( t )  = U(t)  V U - 1 ( 0  (B4) 
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Integrating (B3) and iterating it once, we obtain 

i_ ( ' d t '  ~(l) = p(0) - h J0 [ V(t l ) 'P(0)]  

When we take a diagonal matrix element of this equation, we find that the 
second term on the right-hand side vanishes. This happens because p(0) is 
diagonal. Also, the diagonal elements of ~ are the same as the diagonal 
elements of P. Therefore in the case of diagonal matrix elements we have 

p( t) = p(O) + O( g2) (B6) 

with O(g  2) as explained in the text. 
Now O can always be written as the sum of a factorized part and a 

correction: 

o(t) = oA ( t )oB(t)oF(t)  + o( t )  (BY) 
Specializing to a diagonal matrix element, we find 

p(0) + O(g  2) (BS) 

= [~A(0)+ o(g2)][oB(0) + o(g~)][p~(0) + O(g2)] + o(t) 

Since 0(0)= pA(0)PB(0)PF(0), it follows that the diagonal elements of o(t) 
are of order g 2. Hence we obtain (33). 
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